Test - provides a simple framework for writing test scripts |
Test - provides a simple framework for writing test scripts
use strict; use Test;
# use a BEGIN block so we print our plan before MyModule is loaded BEGIN { plan tests => 14, todo => [3,4] }
# load your module... use MyModule;
# Helpful notes. All note-lines must start with a "#". print "# I'm testing MyModule version $MyModule::VERSION\n";
ok(0); # failure ok(1); # success
ok(0); # ok, expected failure (see todo list, above) ok(1); # surprise success!
ok(0,1); # failure: '0' ne '1' ok('broke','fixed'); # failure: 'broke' ne 'fixed' ok('fixed','fixed'); # success: 'fixed' eq 'fixed' ok('fixed',qr/x/); # success: 'fixed' =~ qr/x/
ok(sub { 1+1 }, 2); # success: '2' eq '2' ok(sub { 1+1 }, 3); # failure: '2' ne '3'
my @list = (0,0); ok @list, 3, "\@list=".join(',',@list); #extra notes ok 'segmentation fault', '/(?i)success/'; #regex match
skip( $^O =~ m/MSWin/ ? "Skip if MSWin" : 0, # whether to skip $foo, $bar # arguments just like for ok(...) ); skip( $^O =~ m/MSWin/ ? 0 : "Skip unless MSWin", # whether to skip $foo, $bar # arguments just like for ok(...) );
This module simplifies the task of writing test files for Perl modules, such that their output is in the format that Test::Harness expects to see.
To write a test for your new (and probably not even done) module, create a new file called t/test.t (in a new t directory). If you have multiple test files, to test the ``foo'', ``bar'', and ``baz'' feature sets, then feel free to call your files t/foo.t, t/bar.t, and t/baz.t
This module defines three public functions, plan(...)
, ok(...)
,
and skip(...)
. By default, all three are exported by
the use Test;
statement.
plan(...)
BEGIN { plan %theplan; }
This should be the first thing you call in your test script. It declares your testing plan, how many there will be, if any of them should be allowed to fail, and so on.
Typical usage is just:
use Test; BEGIN { plan tests => 23 }
These are the things that you can put in the parameters to plan:
tests => number
ok()
and skip()
calls.
todo => [1,5,14]
onfail => sub { ... }
onfail => \&some_sub
You must call plan(...)
once and only once. You should call it
in a BEGIN {...}
block, like so:
BEGIN { plan tests => 23 }
ok(...)
ok(1 + 1 == 2); ok($have, $expect); ok($have, $expect, $diagnostics);
This function is the reason for Test
's existence. It's
the basic function that
handles printing ``ok
'' or ``not ok
'', along with the
current test number. (That's what Test::Harness
wants to see.)
In its most basic usage, ok(...)
simply takes a single scalar
expression. If its value is true, the test passes; if false,
the test fails. Examples:
# Examples of ok(scalar)
ok( 1 + 1 == 2 ); # ok if 1 + 1 == 2 ok( $foo =~ /bar/ ); # ok if $foo contains 'bar' ok( baz($x + $y) eq 'Armondo' ); # ok if baz($x + $y) returns # 'Armondo' ok( @a == @b ); # ok if @a and @b are the same # length
The expression is evaluated in scalar context. So the following will work:
ok( @stuff ); # ok if @stuff has any # elements ok( !grep !defined $_, @stuff ); # ok if everything in @stuff # is defined.
A special case is if the expression is a subroutine reference (in either
sub {...}
syntax or \&foo
syntax). In
that case, it is executed and its value (true or false) determines if
the test passes or fails. For example,
ok( sub { # See whether sleep works at least passably my $start_time = time; sleep 5; time() - $start_time >= 4 });
In its two-argument form, ok(arg1, arg2)
compares the two
scalar values to see if they match. They match if both are undefined,
or if arg2 is a regex that matches arg1, or if they compare equal
with eq
.
# Example of ok(scalar, scalar)
ok( "this", "that" ); # not ok, 'this' ne 'that' ok( "", undef ); # not ok, "" is defined
The second argument is considered a regex if it is either a regex object or a string that looks like a regex. Regex objects are constructed with the qr// operator in recent versions of perl. A string is considered to look like a regex if its first and last characters are ``/'', or if the first character is ``m'' and its second and last characters are both the same non-alphanumeric non-whitespace character. These regexp
Regex examples:
ok( 'JaffO', '/Jaff/' ); # ok, 'JaffO' =~ /Jaff/ ok( 'JaffO', 'm|Jaff|' ); # ok, 'JaffO' =~ m|Jaff| ok( 'JaffO', qr/Jaff/ ); # ok, 'JaffO' =~ qr/Jaff/; ok( 'JaffO', '/(?i)jaff/ ); # ok, 'JaffO' =~ /jaff/i;
If either (or both!) is a subroutine reference, it is run and used as the value for comparing. For example:
ok sub { open(OUT, '>', 'x.dat') || die $!; print OUT "\x{e000}"; close OUT; my $bytecount = -s 'x.dat'; unlink 'x.dat' or warn "Can't unlink : $!"; return $bytecount; }, 4 ;
The above test passes two values to ok(arg1, arg2)
-- the first
a coderef, and the second is the number 4. Before ok
compares them,
it calls the coderef, and uses its return value as the real value of
this parameter. Assuming that $bytecount
returns 4, ok
ends up
testing 4 eq 4
. Since that's true, this test passes.
Finally, you can append an optional third argument, in
ok(arg1,arg2, note)
, where note is a string value that
will be printed if the test fails. This should be some useful
information about the test, pertaining to why it failed, and/or
a description of the test. For example:
ok( grep($_ eq 'something unique', @stuff), 1, "Something that should be unique isn't!\n". '@stuff = '.join ', ', @stuff );
Unfortunately, a note cannot be used with the single argument
style of ok()
. That is, if you try ok(arg1, note)
, then
Test
will interpret this as ok(arg1, arg2)
, and probably
end up testing arg1 eq arg2
-- and that's not what you want!
All of the above special cases can occasionally cause some problems. See BUGS and CAVEATS.
skip(skip_if_true, args...)
if( $skip_if_true ) { ok(1); } else { ok( args... ); }
...except that the ok(1)
emits not just ``ok testnum
'' but
actually ``ok testnum # skip_if_true_value
''.
The arguments after the skip_if_true are what is fed to ok(...)
if
this test isn't skipped.
Example usage:
my $if_MSWin = $^O =~ m/MSWin/ ? 'Skip if under MSWin' : '';
# A test to be skipped if under MSWin (i.e., run except under # MSWin) skip($if_MSWin, thing($foo), thing($bar) );
Or, going the other way:
my $unless_MSWin = $^O =~ m/MSWin/ ? '' : 'Skip unless under MSWin';
# A test to be skipped unless under MSWin (i.e., run only under # MSWin) skip($unless_MSWin, thing($foo), thing($bar) );
The tricky thing to remember is that the first parameter is true if
you want to skip the test, not run it; and it also doubles as a
note about why it's being skipped. So in the first codeblock above, read
the code as ``skip if MSWin -- (otherwise) test whether thing($foo)
is
thing($bar)
'' or for the second case, ``skip unless MSWin...''.
Also, when your skip_if_reason string is true, it really should (for backwards compatibility with older Test.pm versions) start with the string ``Skip'', as shown in the above examples.
Note that in the above cases, thing($foo)
and thing($bar)
are evaluated -- but as long as the skip_if_true
is true,
then we skip(...)
just tosses out their value (i.e., not
bothering to treat them like values to ok(...)
. But if
you need to not eval the arguments when skipping the
test, use
this format:
skip( $unless_MSWin, sub { # This code returns true if the test passes. # (But it doesn't even get called if the test is skipped.) thing($foo) eq thing($bar) } );
or even this, which is basically equivalent:
skip( $unless_MSWin, sub { thing($foo) }, sub { thing($bar) } );
That is, both are like this:
if( $unless_MSWin ) { ok(1); # but it actually appends "# $unless_MSWin" # so that Test::Harness can tell it's a skip } else { # Not skipping, so actually call and evaluate... ok( sub { thing($foo) }, sub { thing($bar) } ); }
skip(...)
function is for tests that might or might not be
possible to run, depending
on the availability of platform-specific features. The first argument
should evaluate to true (think ``yes, please skip'') if the required
feature is not available. After the first argument, skip(...)
works
exactly the same way as ok(...)
does.
Packages should NOT be released with succeeding TODO tests. As soon as a TODO test starts working, it should be promoted to a normal test, and the newly working feature should be documented in the release notes or in the change log.
BEGIN { plan test => 4, onfail => sub { warn "CALL 911!" } }
Although test failures should be enough, extra diagnostics can be
triggered at the end of a test run. onfail
is passed an array ref
of hash refs that describe each test failure. Each hash will contain
at least the following fields: package
, repetition
, and
result
. (You shouldn't rely on any other fields being present.) If the test
had an expected value or a diagnostic (or ``note'') string, these will also be
included.
The optional onfail
hook might be used simply to print out the
version of your package and/or how to report problems. It might also
be used to generate extremely sophisticated diagnostics for a
particularly bizarre test failure. However it's not a panacea. Core
dumps or other unrecoverable errors prevent the onfail
hook from
running. (It is run inside an END
block.) Besides, onfail
is
probably over-kill in most cases. (Your test code should be simpler
than the code it is testing, yes?)
ok(...)
's special handing of strings which look like they might be
regexes can also cause unexpected behavior. An innocent:
ok( $fileglob, '/path/to/some/*stuff/' );
will fail, since Test.pm considers the second argument to be a regex! The best bet is to use the one-argument form:
ok( $fileglob eq '/path/to/some/*stuff/' );
ok(...)
's use of string eq
can sometimes cause odd problems
when comparing
numbers, especially if you're casting a string to a number:
$foo = "1.0"; ok( $foo, 1 ); # not ok, "1.0" ne 1
Your best bet is to use the single argument form:
ok( $foo == 1 ); # ok "1.0" == 1As you may have inferred from the above documentation and examples,
ok
's prototype is ($;$$)
(and, incidentally, skip
's is
($;$$$)
). This means, for example, that you can do ok @foo, @bar
to compare the size of the two arrays. But don't be fooled into
thinking that ok @foo, @bar
means a comparison of the contents of two
arrays -- you're comparing just the number of elements of each. It's
so easy to make that mistake in reading ok @foo, @bar
that you might
want to be very explicit about it, and instead write ok scalar(@foo),
scalar(@bar)
.
This almost definitely doesn't do what you expect:
ok $thingy->can('some_method');
Why? Because can
returns a coderef to mean ``yes it can (and the
method is this...)'', and then ok
sees a coderef and thinks you're
passing a function that you want it to call and consider the truth of
the result of! I.e., just like:
ok $thingy->can('some_method')->();
What you probably want instead is this:
ok $thingy->can('some_method') && 1;
If the can
returns false, then that is passed to ok
. If it
returns true, then the larger expression <
$thingy-
can('some_method') && 1 > >> returns 1, which ok
sees as
a simple signal of success, as you would expect.
skip
is about the only way it can be, but it's still
quite confusing. Just start with the above examples and you'll
be okay.
Moreover, users may expect this:
skip $unless_mswin, foo($bar), baz($quux);
to not evaluate foo($bar)
and baz($quux)
when the test is being
skipped. But in reality, they are evaluated, but skip
just won't
bother comparing them if $unless_mswin
is true.
You could do this:
skip $unless_mswin, sub{foo($bar)}, sub{baz($quux)};
But that's not terribly pretty. You may find it simpler or clearer in the long run to just do things like this:
if( $^O =~ m/MSWin/ ) { print "# Yay, we're under $^O\n"; ok foo($bar), baz($quux); ok thing($whatever), baz($stuff); ok blorp($quux, $whatever); ok foo($barzbarz), thang($quux); } else { print "# Feh, we're under $^O. Watch me skip some tests...\n"; for(1 .. 4) { skip "Skip unless under MSWin" } }
But be quite sure that ok
is called exactly as many times in the
first block as skip
is called in the second block.
If PERL_TEST_DIFF
environment variable is set, it will be used as a
command for comparing unexpected multiline results. If you have GNU
diff installed, you might want to set PERL_TEST_DIFF
to diff -u
.
If you don't have a suitable program, you might install the
Text::Diff
module and then set PERL_TEST_DIFF
to be perl
-MText::Diff -e 'print diff(@ARGV)'
. If PERL_TEST_DIFF
isn't set
but the Algorithm::Diff
module is available, then it will be used
to show the differences in multiline results.
A past developer of this module once said that it was no longer being actively developed. However, rumors of its demise were greatly exaggerated. Feedback and suggestions are quite welcome.
Be aware that the main value of this module is its simplicity. Note that there are already more ambitious modules out there, such as the Test::More manpage and the Test::Unit manpage.
Some earlier versions of this module had docs with some confusing
typos in the description of skip(...)
.
the Test::Simple manpage, the Test::More manpage, the Devel::Cover manpage
the Test::Builder manpage for building your own testing library.
the Test::Unit manpage is an interesting XUnit-style testing library.
the Test::Inline manpage lets you embed tests in code.
Copyright (c) 1998-2000 Joshua Nathaniel Pritikin.
Copyright (c) 2001-2002 Michael G. Schwern.
Copyright (c) 2002-2004 Sean M. Burke.
Current maintainer: Jesse Vincent. <jesse@bestpractical.com>
This package is free software and is provided ``as is'' without express or implied warranty. It may be used, redistributed and/or modified under the same terms as Perl itself.
Test - provides a simple framework for writing test scripts |